Report Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project name</td>
<td>FAB Link: Marine Archaeology Written Scheme of Investigation</td>
</tr>
<tr>
<td>Type of report</td>
<td>WSI</td>
</tr>
<tr>
<td>Document reference</td>
<td>112690.03</td>
</tr>
<tr>
<td>Client name</td>
<td>Intertek</td>
</tr>
<tr>
<td>Address</td>
<td>Exchange House
Station Road
Liphook
Hampshire
GU30 7DW</td>
</tr>
<tr>
<td>On behalf of</td>
<td>FAB Link Limited</td>
</tr>
<tr>
<td>Address</td>
<td>Glategny Court
St Peter Port
Guernsey
GY1 1WR</td>
</tr>
<tr>
<td>Site location</td>
<td>English Channel</td>
</tr>
<tr>
<td>County</td>
<td>Devon</td>
</tr>
<tr>
<td>National grid reference</td>
<td>E541205, N5552604</td>
</tr>
<tr>
<td>Statutory designations</td>
<td>N/A</td>
</tr>
<tr>
<td>Planning authority</td>
<td>Marine Management Office</td>
</tr>
<tr>
<td>Planning reference</td>
<td></td>
</tr>
<tr>
<td>Museum name</td>
<td>N/A</td>
</tr>
<tr>
<td>Museum accession code</td>
<td>N/A</td>
</tr>
<tr>
<td>WA project code</td>
<td>112690</td>
</tr>
<tr>
<td>Date of fieldwork</td>
<td>N/A</td>
</tr>
<tr>
<td>Project management by</td>
<td>Dr Andrew Bicket</td>
</tr>
<tr>
<td>Prepared by</td>
<td>Victoria Lambert, Ben Saunders</td>
</tr>
<tr>
<td>Checked and approved by</td>
<td>Dr Andrew Bicket</td>
</tr>
<tr>
<td>Illustrations by</td>
<td>Kitty Foster</td>
</tr>
</tbody>
</table>

Quality Assurance

<table>
<thead>
<tr>
<th>Version and issue date</th>
<th>Status</th>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1 27/07/2016</td>
<td>E</td>
<td>AB</td>
</tr>
</tbody>
</table>
Contents

1 INTRODUCTION
 1.1 Project background
 1.2 Development description
 1.3 Construction Programme
 1.4 Scope of document

2 THE ARCHAEOLOGICAL ASSESSMENT AREAS
 2.1 Study Area

3 AIMS AND OBJECTIVES
 3.1 Aim
 3.2 Objectives

4 ROLES, RESPONSIBILITIES AND COMMUNICATION
 4.1 Retained Archaeologist Services (RAS)
 4.2 Responsibilities

5 PROJECT MANAGEMENT AND STAFFING
 5.1 External quality standards
 5.2 Personnel

6 ARCHAEOLOGICAL BASELINE SUMMARY
 6.1 Introduction
 6.2 Summary of known and potential archaeological assets

7 POTENTIAL IMPACTS
 7.1 Impacts on marine archaeology
 7.2 Direct impacts
 7.3 Indirect impacts
 7.4 Significance of impacts
 7.5 Summary of potential impacts

8 MITIGATION
 8.1 Introduction

9 METHOD STATEMENTS

10 SCHEME OF INVESTIGATIONS
 10.1 Introduction
 10.2 Standards and Guidance
 10.3 Marine geophysical investigations
 10.4 Marine geoarchaeological investigations
 10.5 Protocol for Archaeological Discoveries

11 FINDS AND ENVIRONMENTAL
 11.1 Artefacts
 11.2 Ordnance
 11.3 Treasure
 11.4 Aircraft
 11.5 Wreck
 11.6 Environmental
 11.7 Conservation and storage

12 REPORTING

13 STORAGE AND CURATION
 13.1 Museum
 13.2 Preparation of archive
 13.3 Discard policy
13.4 Security copy .. 29

14 QUALITY ASSURANCE PROCEDURES .. 29
14.1 Internal quality standards .. 29

15 HEALTH AND SAFETY .. 29
15.1 Health and safety .. 29

16 COPYRIGHT ... 30
16.1 Archive and Report Copyright ... 30
16.2 Third Party Data Copyright ... 30

17 REFERENCES .. 30

APPENDICES .. 33
Appendix 1: Palaeogeographic features of archaeological interest .. 33
Appendix 2: Seabed features of archaeological interest .. 35

Figures
Figure 1: Palaeogeographic features of archaeological potential (1 of 4)
Figure 2: Palaeogeographic features of archaeological potential (2 of 4)
Figure 3: Palaeogeographic features of archaeological potential (3 of 4)
Figure 4: Palaeogeographic features of archaeological potential (4 of 4)
Figure 5: Seabed anomalies of archaeological potential (1 of 4)
Figure 6: Seabed anomalies of archaeological potential (2 of 4)
Figure 7: Seabed anomalies of archaeological potential (3 of 4)
Figure 8: Seabed anomalies of archaeological potential (4 of 4)

Tables
Table 1: Interpreted stratigraphy of the Study Area
Table 2: Sections of study area by shallow stratigraphy
Table 3: Anomalies of archaeological potential within or impacting on the UK marine cable corridor
Table 4: Classification of anomalies identified within or impacting on the UK marine cable corridor
Table 5: Summary of maritime potential by period
Table 6: Summary of aviation potential by period
Table 7: Impact zone of influence- marine archaeology
Table 8: Impact assessment summary- marine archaeology
Table 9: Mitigation measures- marine archaeology
Table 10: Geoarchaeological programme of analysis
1 INTRODUCTION

1.1 Project background

1.1.1 Wessex Archaeology was commissioned to prepare a Written Scheme of Investigation (WSI) in respect of part of the marine cable corridor of the FAB Link; an underground and subsea interconnector which will allow exchange and trading of up to 1400MW of electricity between France and Britain via Alderney. The interconnector is being developed by Transmission Investment, together with the French grid company RTE (Réseau de Transport d’Électricité) and Alderney based tidal power developer Alderney Renewable Energy (ARE). FAB Link Limited is a joint venture between Transmission Investment and ARE. FAB Link Ltd will own the assets in Alderney and Britain (the subject of this WSI).

1.1.2 This WSI is submitted prior to any planning conditions regarding marine archaeology being attached to the project.

1.2 Development description

1.2.1 The FAB Link marine cable corridor extends from landfall at Budleigh Salterton in Devon, UK, to landfall at Corblets Bay, on the north coast of Alderney, and then continues on from landfall at Longis bay, on the south coast of Alderney to landfall at Le Platé, France. The project is designated as a Project of Common Interest (PCI project number 1.7.1) under the provisions of European Union Regulation No. 347/2013 on guidelines for Trans-European Network for Energy (TEN-E Regulations) and can access funding through the Connecting Europe Facility (CEF).

1.2.2 The FAB Link is made up of two pairs of high voltage direct current (HVDC) electrical cables, a converter station at each end and connections to the high voltage grids.

1.3 Construction Programme

1.3.1 Construction of the interconnector is currently scheduled for 2018-2021.

1.4 Scope of document

1.4.1 This document was requested by FAB Link Ltd as part of the draft application file for their Marine Licence. It sets out mitigation strategies and fieldwork schedules for the appointed Archaeological Contractor. The contents of this WSI comprise Mean Low Water Springs (MLWS) at the UK landfall to the median line with France (see section 2.1).
2 THE ARCHAEOLOGICAL ASSESSMENT AREAS

2.1 Study Area

2.1.1 The route of the FAB Link marine cable corridor will extend between Budleigh Salterton, Devon, UK, to the landfall at Corblets on the north coast of Alderney, underground across the island to the south coast landfall at Longis Bay, where it will extend offshore to the French landfall at Le Platé.

2.1.2 For the purposes of this document, the Study Area is defined by the extent of the marine cable corridor. The marine cable corridor extends from the MLWS at Budleigh Salterton, UK, to the southern extent of the UK Exclusive Economic Zone (EEZ). The location of the marine cable corridor is illustrated in Figure 1 - Figure 4. The Study Area will not take into account the intertidal and terrestrial elements at the landfall at Budleigh Salterton which are part of a separate report. UK Waters are from KP138 to KP45-44 (Wessex Archaeology 2016a).

3 AIMS AND OBJECTIVES

3.1 Aim

3.1.1 The specific aim of this WSI is to set out the baseline resource for the known and potential archaeological assets within the Study Area, and the mitigation strategies proposed to address the impacts identified in the EA (FAB Link 2016).

3.2 Objectives

3.2.1 The objectives of this WSI are as follows:

- To ensure that any further geophysical and geotechnical investigations associated with the project are subject to archaeological input, review, recording and sampling;
- To provide for archaeological involvement in any diver and/or ROV obstruction surveys conducted for the scheme;
- To provide the exact position and extent of Archaeological Exclusion Zones (AEZs) that may be required, and establish methods for their monitoring, modification and/or removal in the future;
- To propose measures for mitigating effects upon any archaeological material that may be encountered during the operations associated with the scheme; and
- To establish the reporting, publication, conservation and archiving requirements for the archaeological works undertaken in the course of the scheme.
4 ROLES, RESPONSIBILITIES AND COMMUNICATION

4.1 Retained Archaeologist Services (RAS)

4.1.1 FAB Link Ltd will commission a Retained Archaeologist (RA) during the FAB Link pre-construction and construction phases.

4.1.2 The Archaeological Curators for the offshore heritage environment are the Historic England Maritime Planning Unit with specialist advice provided by the Historic England South West Science Advisor with regard to activities undertaken as part of this WSI. The relevant contacts are:

- Dr. Christopher Pater, Marine Planning Unit, Historic England, Eastgate Court, 195-205 High Street, Guilford, Surrey, GU1 3EH; and
- Vanessa Straker, Historic England Regional Science Advisor, South West of England Region, Historic England, 29 Queen Street, Bristol BS1 4ND.

4.1.3 Archaeological contractors may be appointed by FAB Link Ltd and/or their appointed representatives (contractors / sub-contractors) to carry out specific packages of archaeological work. In these instances, the RA has a coordinating role ensuring works are specified, planned, undertaken and reported in accordance with this WSI.

4.1.4 For the operation of the Protocol for Archaeological Discoveries (PAD), the Nominated Contact for the Developer will be confirmed.

4.2 Responsibilities

4.2.1 The responsibility for implementing this WSI rests with FAB Link Ltd and their appointed representatives.

4.2.2 FAB Link Ltd and/or their appointed representatives, or any archaeological body that they may appoint to manage the implementation of the WSI, will seek curatorial advice from Historic England.

4.2.3 Interaction with Historic England will be administered by FAB Link Ltd and/or their appointed representatives with advice where appropriate through the RA.

4.2.4 Other offshore archaeological services will be undertaken as required and agreed in advance with FAB Link Ltd (e.g. archaeological assessments of survey data) and planned and delivered through bespoke Method Statements as required (Section 9).

4.2.5 FAB Link Ltd and/or their appointed representatives will ensure that Contractors make project personnel aware of this WSI, any associated AEZs in force, and the PAD.

4.2.6 All relevant Contractors engaged in the construction of the project shall:

- Familiarise themselves with the requirements of the WSI and make them available to all their staff working on the project (e.g. for PAD briefings and archaeological input to Method Statements);
- Obey legal obligations in respect of ‘wreck’ and ‘treasure’ under the Merchant Shipping Act 1995 and the Treasure Act 1996 respectively;
- Respect constraint maps and AEZs;
• Assist and afford access to archaeologists employed by FAB Link Ltd;

• Inform the RA of any environmental constraint or matter relating to health, safety and welfare of which they are aware that is relevant to the archaeologists’ activities; and

• Implement the PAD.

5 PROJECT MANAGEMENT AND STAFFING

5.1 External quality standards

5.1.1 Wessex Archaeology is registered as an archaeological organisation with the Chartered Institute for Archaeologists (CIfA). Wessex Archaeology fully endorses the Code of Conduct and Regulations for professional conduct of the CIfA.

5.1.2 All staff directly employed or sub-contracted by Wessex Archaeology will be of a standard approved by Wessex Archaeology, and archaeological staff will be employed in line with CIfA codes of practice and will normally be members of the CIfA.

5.2 Personnel

5.2.1 Wessex Archaeology employs staff who are highly qualified and experienced in coordinating and running projects as RA's.
6 ARCHAEOLOGICAL BASELINE SUMMARY

6.1 Introduction

6.1.1 The results within this baseline are those identified in the Marine Archaeological Technical Report (Wessex Archaeology 2016a) and EA (Wessex Archaeology 2016b; FAB Link 2016).

6.1.2 The following data sources were consulted for this assessment:

- the United Kingdom Hydrographic Office (UKHO) data for charted wrecks and obstructions;
- the National Record for the Historic Environment (NRHE) maintained by Historic England, comprising data for terrestrial and marine archaeological sites, find spots and archaeological events;
- the National Heritage List for England maintained by Historic England, comprising data of designated heritage assets including sites protected under the Protection of Military Remains Act 1986 and the Protection of Wrecks Act 1973;
- the Devon Historic Environment Record (DHER), comprising a database of all recorded terrestrial and marine archaeological sites, find spots and archaeological events within the county and offshore.
- Historical maps and Ordnance Survey maps;
- Admiralty Charts; and
- Relevant primary and secondary documentary sources and grey literature held by Wessex Archaeology, and those available through the Archaeology Data Service and other websites. Both published and unpublished archaeological reports relating to excavations and observations in the area around the Study Area were reviewed.

6.2 Summary of known and potential archaeological assets

6.2.1 There are no designated prehistoric archaeological sites located in the study area.

6.2.2 The baseline summary for seabed prehistory comprises a review of geological mapping of seabed sediments, solid geology and bathymetry from published sources. This has been enhanced by the geoarchaeological review of geotechnical and geophysical datasets gathered for the project to produce a stratigraphic framework for understanding the archaeological potential of the Quaternary geology within the study area. This assessment was further supported by the examination of models of past sea level and assessed alongside the known archaeological record to effectively communicate the relationship of the study area to the extent of habitable land throughout the Middle Pleistocene and Holocene. The potential for submerged prehistoric archaeology is developed and discussed in support of this WSI.

6.2.3 A basic stratigraphy of the study area was devised from both the assessed data and the geotechnical logs. A total of six broad geological units were identified and are summarised in Table 1.
Table 1: Interpreted stratigraphy of the Study Area

<table>
<thead>
<tr>
<th>Unit</th>
<th>Age</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 6</td>
<td>Holocene</td>
<td>Late Holocene/Modern seabed sediments and intertidal deposits.</td>
</tr>
<tr>
<td>Unit 5</td>
<td>Holocene</td>
<td>Sand/silt unit, possible relict seabed sediments built up by deepening water during Holocene transgression.</td>
</tr>
<tr>
<td>Unit 4</td>
<td>Holocene</td>
<td>Lag gravel deposit created by the Holocene transgression.</td>
</tr>
<tr>
<td>Unit 3</td>
<td>Pleistocene/ Early Holocene</td>
<td>Palaeochannel features cut into the bedrock/Eocene surface.</td>
</tr>
<tr>
<td>Unit 2</td>
<td>Eocene</td>
<td>Stiff, laminated clay intermittently overlying bedrock, generally deposited in topographic lows in the bedrock surface.</td>
</tr>
<tr>
<td>Unit 1</td>
<td>Pre-Cambrian to Cretaceous</td>
<td>Various bedrock units, including metamorphic rocks, New Red Sandstone, Jurassic mudstone and Cretaceous chalk.</td>
</tr>
</tbody>
</table>

6.2.4 The entire sequence of six units was not visible at any single location or within a single geotechnical sample. In order to aid in determining areas of relatively high archaeological potential, the marine cable corridor was divided into sections based on similar stratigraphy, presented in Table 2. These sections give a broad, background indication of archaeological potential, but a number of additional palaeogeographic features of possible archaeological potential have also been identified.

Table 2: Sections of study area by shallow stratigraphy

<table>
<thead>
<tr>
<th>Section</th>
<th>Present Units</th>
<th>Archaeological Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedrock with Thin Seabed Sediment</td>
<td>Unit 1, Unit 6</td>
<td>Low</td>
</tr>
<tr>
<td>Bedrock with Seabed/Intertidal Sediments</td>
<td>Unit 1, Unit 6</td>
<td>Medium - High</td>
</tr>
<tr>
<td>Bedrock with Lag Gravel and Seabed Sediments</td>
<td>Unit 1, Unit 4, Unit 6</td>
<td>Low - Medium</td>
</tr>
<tr>
<td>Bedrock with Lag Gravel and Relict Seabed Sediment</td>
<td>Unit 1, Unit 4, Unit 5, Unit 6</td>
<td>Low - Medium</td>
</tr>
<tr>
<td>Bedrock with Eocene Clay, Lag Gravel and Seabed Sediment</td>
<td>Unit 1, Unit 2, Unit 4, Unit 6</td>
<td>Low - Medium</td>
</tr>
</tbody>
</table>

6.2.5 A total of 13 palaeogeographic features of archaeological potential have been identified within the study area: 7500-7512. Two features are considered to be of probable archaeological interest (P1: 7510 and 7511) and the remaining ten are considered as being of possible archaeological interest (P2). These features are summarised below and their distribution is illustrated in Figure 1 - Figure 4.

6.2.6 Three palaeogeographic features within UK Waters (7503, 7510 and 7511) have been interpreted as channels. These are distinct cut and fill features cut into the underlying bedrock.
bedrock that are potentially fluvial in origin. Depending on the age of 7503, it is considered to have an archaeological potential that ranges from low to high. An accurate understanding of its potential can only be ascertained through further investigation. Features 7510 and 7511 are considered to be of high archaeological potential due to their probable Early Holocene age and may contain important palaeoenvironmental material.

6.2.7 A total of 10 palaeogeographic features identified within UK Waters (7500, 7501, 7502, 7504, 7505, 7506, 7507, 7508, 7509 and 7512) have been interpreted as cut and fills. These features are less well defined than the previously described channels and their precise origins and ages are unclear. They are considered to be of medium archaeological potential, although the true potential of these features will depend on their age.

6.2.8 A detailed assessment of the geological baseline and stratigraphy identified within the study area, along with full descriptions of the 13 individual features are provided in Appendix 1.

Seabed prehistory potential

6.2.9 The archaeological potential reflects the preservation of the units identified in each section (Table 3, Figure 1 - Figure 4). The occupation of the study area intersected by the marine cable corridor by hominins during the Palaeolithic was dependent on sea level fluctuations, and the numerous glacial and marine transgressions and regressions that determined when the area was habitable. There were several periods during the Lower and Middle Palaeolithic (1,570,000 - 18,000 BP) when the region would have been dry land. Areas that are now submerged would have been part of a vast plain, and the moderate temperatures would have allowed a habitable environment, permitting the movement of Pleistocene animals and may have facilitated occupation and exploitation by early hominins (Bicket and Tizzard 2015). The glaciations and sea level changes also affect whether archaeological evidence survives, as glacial outwash and rising sea levels cause erosion or deposition of sediment, which can move artefacts from their primary (original) locations to secondary locations.

6.2.10 Evidence of human occupation for in excess of 900,000 years has been recorded in the UK, at Happisburgh 3, Norfolk (Parfitt et al. 2010), recently enhanced by the find of early prehistoric footprints dating to around 800,000 years ago (Ashton et al. 2014).

6.2.11 The Mesolithic record of the UK suggests a strong relationship between human activity and coasts, wetlands, rivers and streams. These areas provide rich sources of food and resources for these hunter/gatherer groups, as well as important transport routes inland or between islands. Any surviving sedimentary deposits from this period could potentially contain both in situ (Unit 3) and derived (Units 4-6) artefacts from a time when these coastal and littoral landscapes, now submerged by the sea, were utilised intensively by human populations. Thirteen shallow palaeogeographic features are present within UK Waters and any of these have the potential to produce important archaeological artefacts, both derived and in situ (Unit 3).

Known maritime

6.2.12 Data obtained were reviewed and those within the study area were extracted and compiled to form a gazetteer of the known maritime and aviation baseline, along with geophysical anomalies that could not be linked to known records, but were considered to be of anthropogenic origin. The research for maritime and aviation history was then combined with the archaeological assessment of geophysical survey data.
6.2.13 There are currently no sites within the study area that are subject to statutory protection from the Protection of Wrecks Act 1973, the Protection of Military Remains Act 1986 or the Ancient Monuments and Archaeological Areas Act 1979; the three legislative provisions that could be used to protect marine archaeological sites.

6.2.14 There is one charted obstruction located within the study area.

6.2.15 There are no known aircraft crash sites located within the study area.

6.2.16 Within the study area, a total of 60 anomalies were identified within the geophysical data and interpreted as being of possible archaeological potential as shown in Table 3.

Table 3: Anomalies of archaeological potential within or impacting on the UK marine cable corridor

<table>
<thead>
<tr>
<th>Archaeological Discrimination</th>
<th>Number of Anomalies</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0</td>
<td>Anthropogenic origin of archaeological interest</td>
</tr>
<tr>
<td>A2</td>
<td>59</td>
<td>Uncertain origin of possible archaeological interest</td>
</tr>
<tr>
<td>A3</td>
<td>1</td>
<td>Historic record of possible archaeological interest with no corresponding geophysical anomaly</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

6.2.17 The anomalies were further classified by probable type, which can further aid in the assigning of archaeological potential and importance. Table 4 below shows the classifications of the anomalies.

Table 4: Classification of anomalies identified within or impacting on the UK marine cable corridor

<table>
<thead>
<tr>
<th>Anomaly Classification</th>
<th>Number of Anomalies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debris field</td>
<td>1</td>
</tr>
<tr>
<td>Debris</td>
<td>3</td>
</tr>
<tr>
<td>Rope/chain</td>
<td>1</td>
</tr>
<tr>
<td>Seafloor disturbance</td>
<td>1</td>
</tr>
<tr>
<td>Dark reflector</td>
<td>17</td>
</tr>
<tr>
<td>Magnetic</td>
<td>36</td>
</tr>
<tr>
<td>Recorded obstruction</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
</tr>
</tbody>
</table>

6.2.18 None of the anomalies identified within the study area have been interpreted as A1 – anthropogenic origin of archaeological interest.

6.2.19 A total of 60 anomalies have been interpreted as A2 – uncertain origin of possible archaeological interest and are summarised below.

6.2.20 One A2 anomaly (7011) was classified as a debris field, comprising a group of objects including some ferrous material, interpreted as anthropogenic in origin (Figure 5).
6.2.21 Three anomalies (7006, 7010 and 7062) have been classified as individual pieces of debris; objects considered to be anthropogenic in origin due to their size and form. One of these anomalies (7062) has an associated magnetic value indicating the presence of ferrous material. The remaining two anomalies have been interpreted as non-ferrous in origin.

6.2.22 One anomaly (7007) has been identified as a linear object classified as rope or chain. Since this anomaly has no associated magnetic value the likelihood is that it is rope (Figure 5).

6.2.23 Another anomaly (7029) was classified as a seafloor disturbance; comprising a group of objects of possible anthropogenic origin (Figure 6). The anomaly could be a natural feature or represent partially buried non-ferrous debris.

6.2.24 A total of 17 anomalies were classified as dark reflectors; anomalous to the surrounding seabed, displaying some anthropogenic characteristics, although their precise nature is uncertain. These anomalies do not have an associated magnetic value.

6.2.25 A total of 36 anomalies were identified in only the marine magnetometer data. None of these anomalies had corresponding SSS or MBES contacts and therefore all have the potential to represent possible buried ferrous debris. The magnetic anomalies range in size from 6nT (7042) up to 574nT (7085).

6.2.26 The remaining feature from this section (7021) has been interpreted as an A3 – historic record of possible archaeological interest with no corresponding geophysical anomaly. This record relates to the location of the identified remains of a mobile loading crane, recorded as being lost during transfer operations between two tankers in 1982 (UKHO 18344, Seazone 2360000042001101 and Seazone 637000001090170). No remains were identified within the geophysical data at this location and the position for this record may be unreliable. The record relates to an object not of archaeological potential but is retained in the gazetteer due to its classification as a recorded obstruction.

6.2.27 The locations of these anomalies are illustrated in Figure 5 - Figure 8, and full details of each of the 60 anomalies within UK waters are presented in Appendix 2.

Known aviation

6.2.28 There are no known archaeological aviation assets within the study area.

Maritime and aviation archaeological potential

Introduction

6.2.29 The assessment of potential for the discovery of shipwreck and shipwreck-derived material, and aviation archaeology within the study area draws on the results of the geophysical survey and desk-based research combined with further research of the wider area.

Maritime Potential

6.2.30 Data informing the potential marine archaeological resource relate to a location of loss rather than to actual remains on the seabed, except by chance, and were assessed in order to provide an indication of the type of maritime and aviation activity that occurred across the study area, as well as providing an indication of the potential for the presence of the remains of currently uncharted wrecks and aircraft remains to exist within the study area.
6.2.31 There is potential for the presence of archaeological material of a maritime nature spanning from the Mesolithic period to the present day within all four legislative areas of the study area, and are summarised by general period ranges in Table 5 below.

Table 5: Summary of maritime potential by period

<table>
<thead>
<tr>
<th>Period</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1508 AD</td>
<td>Potential for material associated with prehistoric maritime activities. Prehistoric maritime activities include coastal travel, fishing and the exploitation of other marine and coastal resources. Vessels of this period include rafts, hide covered watercraft and log boats.</td>
</tr>
<tr>
<td></td>
<td>Potential for material associated with later prehistoric maritime activities, including seaworthy watercraft suitable for overseas voyages to facilitate trade and the exploitation of deep water resources. Such remains are likely to comprise larger boat types, including those representing new technologies such as the Bronze Age sewn plank boats that are associated with a growing scale of seafaring activities.</td>
</tr>
<tr>
<td></td>
<td>Potential for material of Romano-British/Romano-Gallo date, associated with the expansion and diversification of trade with the Continent. Watercraft of this period, where present, may be representative of a distinct shipbuilding tradition known as ‘Romano-Celtic’ shipbuilding, often considered to represent a fusion of Roman and northern European methods.</td>
</tr>
<tr>
<td></td>
<td>Potential for material associated with coastal and seafaring activity in the ‘Dark Ages’, associated with the renewed expansion of trade routes and Germanic and Norse invasion and migration. Vessels of this period may be representative of new shipbuilding traditions including changes in technique.</td>
</tr>
<tr>
<td></td>
<td>Potential for material associated with medieval maritime activity, including that associated with increasing trade between the UK and Europe, the development of established ports around the southern North Sea and the expansion of fishing fleets and the herring industry. Vessels of this period are representative of a shipbuilding industry which encompassed a wide range of vessel types (comprising both larger ships and vernacular boats). Such wrecks may also be representative of new technologies (e.g. the use of flush-laid strakes in construction), developments in propulsion, the development of reliable navigation techniques and the use of ordnance.</td>
</tr>
<tr>
<td>1509 to 1815 AD</td>
<td>Increasing potential for post-Medieval shipwrecks representative of continuing technological advances in the construction, fitting and arming of ships, and in navigation, sailing and steering techniques. Vessels of this period continued to variously represent both the clinker techniques and construction utilising the flush-laid strakes technique.</td>
</tr>
<tr>
<td></td>
<td>Increasing potential for post-medieval shipwrecks associated with the expansion of transoceanic communications and the opening up of the New World.</td>
</tr>
<tr>
<td></td>
<td>Increasing potential for post-medieval shipwrecks associated with the establishment of the Royal Navy during the Tudor period and the increasing scale of battles at sea.</td>
</tr>
<tr>
<td></td>
<td>Increasing potential for post-medieval shipwrecks associated with continuing local trade and marine exploitation including the transport of goods associated with the agricultural revolution.</td>
</tr>
<tr>
<td>1816 to 1913 AD</td>
<td>Increasing potential for the discovery of shipwrecks associated with the introduction of iron and later steel in shipbuilding techniques. Such vessels may also be representative of other fundamental changes associated with the industrial revolution, particularly with regards to propulsion and the emergence of steam propulsion and the increasing use of paddle and screw propelled vessels.</td>
</tr>
</tbody>
</table>
| | Potential for the discovery of shipwrecks demonstrating a diverse array of vernacular boat types evolved for use in specific environments.
Marine Archaeology: Written Scheme of Investigation

Period	Summary
1914 to 1945 AD | Potential for the discovery of shipwrecks associated with the two world wars including both naval vessels and merchant ships. Wrecks of this period may also be associated with the increased shipping responding to the demand to fulfil military requirements. A large number of vessels dating to this period were lost as a result of enemy action.

Post 1946 | Potential for wrecks associated with a wide range of maritime activities, including military, commerce, fishing and leisure. Although ships and boats of this period are more numerous, losses decline due to increased safety coupled with the absence of any major hostilities. Vessels dating to this period are predominantly lost as a result of any number of isolated or interrelated factors including human error, adverse weather conditions, collision with other vessels or navigational hazards or mechanical faults.

Aviation Potential

6.2.32 There are no known aircraft crash sites recorded in the study area. However, there is still potential for the discovery of previously unknown aircraft material.

6.2.33 There is potential for the presence of aviation material dating from the early 20th century until more recent times, with a concentration dating to the World Wars and in particular World War Two (WWII) and are summarised by general period ranges in Table 6 below. Discoveries may occur anywhere within the study area, but are likely to increase nearer the coastlines.

Table 6: Summary of aviation potential by period

<table>
<thead>
<tr>
<th>Period</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-1939</td>
<td>Minimum potential for material associated with the early development of aircraft. Aircraft of this period may represent early construction techniques (e.g. those constructed of canvas covered wooden frames) or may be associated with the mass-production of fixed wing aircraft in large numbers during World War One (WWI). Minimum potential for material associated with the development of civil aviation during the 1920s and 1930s, with the expansion of civilian flight from the UK to a number of European and worldwide destinations.</td>
</tr>
<tr>
<td>1939 to 1945</td>
<td>Very high potential for WWII aviation remains, particularly as the study area was a hub for hostile activity. Aircraft of this period are likely to be representative of technological innovations propelled by the necessities of war that extended the reliability and range of aircraft.</td>
</tr>
<tr>
<td>Post-1945</td>
<td>Potential for aviation remains associated with military activities dominated by the Cold War, the evolution of commercial travel and recreational flying and the intensification of offshore industry (including helicopter remains). Aircraft of this period may be representative of advances in aerospace engineering and the development of the jet engine.</td>
</tr>
</tbody>
</table>
7 POTENTIAL IMPACTS

7.1 Impacts on marine archaeology

7.1.1 The EA has identified that during installation and maintenance the following aspects of the project have the potential to adversely affect marine archaeology. No impacts have been identified during operation of the marine cables. For each aspect the assessment has considered the different project aspects which could cause the impact and from these selected the worst case zone of influence; presented in Table 7.

Table 7: Impact zone of influence - marine archaeology

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Aspect</th>
<th>Potential Impact</th>
<th>Receptor</th>
<th>Zone of Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation & Maintenance</td>
<td>Pre-sweeping, pre lay grapnel run, plough trenching, jet trenching, Horizontal Directional Drilling (HDD), cable protection, anchors</td>
<td>Direct disturbance to seabed</td>
<td>Known and potential seabed prehistory receptors</td>
<td>40m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Known and recorded maritime and aviation receptors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geophysical anomalies of possible anthropogenic origin</td>
<td>40m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Currently unknown archaeological sites and artefacts</td>
<td>40m</td>
</tr>
<tr>
<td>Installation & Maintenance</td>
<td>Pre-sweeping, plough trenching, jet trenching, cable protection</td>
<td>Indirect disturbance to receptors caused by changes to the hydrodynamic and sedimentary regimes due to spoil removal and distribution</td>
<td>Known and potential seabed prehistory receptors, maritime receptors and aviation receptors</td>
<td>500m</td>
</tr>
<tr>
<td>Installation & Maintenance</td>
<td>Use of anchors</td>
<td>Indirect impact to receptors – displacement of sediment either affording increased protection to, or deterioration through erosion of, receptors in the vicinity</td>
<td>Known and potential seabed prehistory receptors, maritime receptors and aviation receptors</td>
<td>500m</td>
</tr>
<tr>
<td>Operation</td>
<td>Cable protection</td>
<td>Indirect disturbance to receptors from scour and plume effects resulting in increased protection to, or deterioration through erosion</td>
<td>Known and potential seabed prehistory receptors, maritime receptors and aviation receptors</td>
<td>500m</td>
</tr>
</tbody>
</table>

7.1.2 Both direct and indirect impacts may damage, disturb or destroy archaeological receptors that include seabed prehistory, shipwreck and/or aviation remains.
7.2 Direct impacts

7.2.1 Archaeological receptors may be buried within seabed sediments or may rest upon the seafloor, either with or without height. As such, direct impacts to these receptors can occur during any development or related activity that makes contact with the sea floor or cuts through seabed deposits. Archaeological receptors with height, such as wrecks, may also be impacted by development or activities that occur within the water column.

7.2.2 Installation and maintenance activities have the potential to have the following direct impacts; which are listed below along with an indication of the effect on the receptor:

- UXO survey and clearance – direct damage/destruction to receptors located within close proximity to UXO;
- Seabed preparation including pre-lay grapnel run – direct damage/destruction to receptors lying on the seafloor and buried within the shallower seabed sediments;
- Cable burial using ploughing, jet trenching and/or mechanical trenching methods – direct damage/destruction to receptors, lying on the seafloor and buried within the seabed sediments;
- Installation of cable protection (where burial is not possible) using cast-iron shells, concrete mattresses and/or rock-berms – direct damage/destruction to receptors lying on the seafloor and buried within the seabed sediments; and
- Use of anchors by vessels during installation and maintenance– localised damage/destruction to receptors, lying on the seafloor and buried within the seabed sediments.

7.3 Indirect impacts

7.3.1 Potential indirect impacts arise when direct impacts have effects beyond their primary footprint and can affect archaeological sites or material some distance away. Indirect impacts can include changes to erosion patterns, sediment transport, currents and water quality during installation, caused by the direct impacts listed above. In general, archaeological receptors exposed to marine processes will deteriorate faster than those buried within seabed sediments. Aspects of the project works that result in increased sediment cover may afford additional protection to archaeological receptors, thereby causing a positive beneficial effect.

7.3.2 However, aspects of FAB Link that result in increased scouring or removal of sediment cover may expose previously buried receptors thereby increasing the rate of deterioration.

7.3.3 Installation and maintenance activities have the potential to have the following indirect impacts; which are listed below along with an indication of the effect to the receptor:

- Installation of cable protection (where burial is not possible) using cast-iron shells, concrete mattresses and/or rock-berms – potential scour and plume effects resulting in increased protection to, or deterioration through erosion of, receptors in the vicinity;
- Deployment of large vessels during installation and maintenance– potential displacement of sediment either affording increased protection to, or deterioration through erosion of, receptors in the vicinity; and
• Changes to the hydrodynamic and sedimentary regimes due to spoil removal and distribution caused by trenching operations – increased protection to, or deterioration through erosion of, receptors resulting in a positive or negative effect on receptors in the vicinity.

7.4 Significance of impacts

7.4.1 Due to the fragile and non-renewable nature of the marine archaeological receptors on and/or under the seabed, any direct impacts have the potential to be permanent and negative. As a result, and in the absence of appropriate mitigation, both the sensitivity and the magnitude of direct impacts on such resources will automatically be considered high resulting in major negative impact significance.

7.4.2 The indirect effects to archaeological receptors are expected to be negligible.
7.5 Summary of potential impacts

7.5.1 The summary of potential impacts for the known and currently unknown marine archaeology receptors present within and in proximity to the study area is presented in Table 8. Corresponding mitigation strategies are set out in Table 9.

Table 8: Impact assessment summary- marine archaeology

<table>
<thead>
<tr>
<th>Determination of Potential Impact</th>
<th>Impact Assessment</th>
<th>Consideration of Mitigation</th>
<th>Residual Impact Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Phase</td>
<td>Receptor</td>
<td>Magnitude</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>Installation & Maintenance</td>
<td>Direct disturbance to the seabed (caused by UXO survey and clearance; seabed preparation; cable laying; cable burial methods and/or cable protection; and use of anchors by project vessels)</td>
<td>Known and potential seabed prehistory receptors</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Known and documented maritime receptors and aviation receptors (A1s and A3s)</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Project Phase</td>
<td>Potential Impact</td>
<td>Receptor</td>
<td>Magnitude</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Geophysical anomalies of possible anthropogenic origin (A2s)</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Currently unknown archaeological sites and artefacts</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Project Phase</td>
<td>Potential Impact</td>
<td>Receptor</td>
<td>Magnitude</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Installation</td>
<td>Indirect disturbance to receptors - cable burial methods and/or cable protection causing changes to the hydrodynamic and sedimentary regimes due to spoil removal and distribution</td>
<td>Known and potential seabed prehistory receptors; maritime receptors; and aviation receptors</td>
<td>Negligible</td>
</tr>
<tr>
<td>Operation</td>
<td>Indirect disturbance to receptors - installed cable protection causing scour and plume effects resulting in increased protection to, or deterioration through erosion</td>
<td>Known and potential seabed prehistory receptors; maritime receptors; and aviation receptors</td>
<td>Negligible</td>
</tr>
<tr>
<td>Project Phase</td>
<td>Potential Impact</td>
<td>Receptor</td>
<td>Magnitude</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Installation & Maintenance</td>
<td>Indirect impact to receptors - use of anchors by project vessels potentially displacing sediment either affording increased protection to, or deterioration through erosion of, receptors in the vicinity</td>
<td>Known and potential seabed prehistory receptors; maritime receptors; and aviation receptors</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

8 MITIGATION

8.1 Introduction

8.1.1 This section provides a very brief overview of the mitigation for each of the receptor types. More detailed information about the types of mitigation and the way they will be implemented can be found in the Scheme of Investigations (Section 10).

8.1.2 Mitigation measures fall within three main categories: avoidance; reduction of impact; and remedying and offsetting. Best practice favours the preservation in situ of archaeological remains; therefore the ideal mitigation for archaeological remains is avoidance (Wessex Archaeology 2007). The five mitigation measures proposed are listed in Table 9.

Table 9: Mitigation measures- marine archaeology

<table>
<thead>
<tr>
<th>ID</th>
<th>Measure proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Preservation of archaeological remains in situ, as the primary option for mitigation, can often be achieved through the implementation of AEZs. No AEZs are currently active in the section of the Project in UK Waters.</td>
</tr>
<tr>
<td>M2</td>
<td>Where possible, the A2 geophysical anomalies will be avoided. Once the Installation Contractor has determined the final route configuration within the marine cable corridor, the anomalies will be revisited to determine whether: they will be impacted by the route; and if an AEZ should be established. It is possible that these anomalies could represent important archaeological material; however, they may also represent modern debris of no archaeological significance.</td>
</tr>
<tr>
<td>M3</td>
<td>Preservation by record (i.e. archaeological excavation and recording prior to an impact occurring) will offset disturbances to sites classified as A2, where preservation in situ is not practicable. Sites that have been destabilised, but not destroyed, may be re-stabilised and subject to detailed analysis.</td>
</tr>
<tr>
<td>M4</td>
<td>A PAD similar to the established Protocol for Archaeological Discoveries: Offshore Renewables Projects (The Crown Estate 2014) and the Marine Aggregate Industry Protocol for the Reporting of Finds of Archaeological Interest (BMAPA and Historic England 2005) will be established for the project. The PAD provides a system for reporting and investigating unexpected archaeological discoveries encountered during the course of the project. The aim of the PAD is to reduce any adverse effects of the development upon the historic environment by enabling FAB Link staff, contractors and sub-contractors to report finds in a manner that is both convenient to their every-day work and effective with regard to curatorial requirements. Archaeological discoveries reported via the PAD may include submerged prehistoric material, shipwreck material or aviation material. The PAD will also make provision for the institution of temporary exclusion zones around areas of possible archaeological interest, for prompt archaeological advice and, if necessary, for archaeological inspection of important features prior to further works in the area.</td>
</tr>
<tr>
<td>M5</td>
<td>A number of palaeogeographic features of archaeological potential have been identified along the study area, and sediments of archaeological and palaeoenvironmental interest have been recovered within the geotechnical samples. It is recommended that ten of these samples be subject to Stage 2 geoaarchaeological recording as listed in Table 10, to further ascertain their nature and determine their archaeological potential. This selection of samples should enable any identified palaeogeographic features of archaeological potential to be investigated, alongside ground-truthing the interpretation of the generalised stratigraphy of the study area outlined in</td>
</tr>
</tbody>
</table>
9 METHOD STATEMENTS

9.1.1 This WSI provides a framework for further archaeological investigations for FAB Link. Detailed method statements will be produced, as required, for further archaeological works, such as those identified in the Scheme of Investigations section below.

9.1.2 Each archaeological method statement will correspond to a package of works, for example, archaeological assessment of marine geophysical data, archaeological assessment of ROV data from the UXO survey, and archaeological investigation using divers and/or ROVs.

9.1.3 Method statements will provide details about:

- Form of commission and contractual relationship with the Client;
- Relation between the method statement, the WSI and the license condition(s);
- Context in terms of relevant construction works;
- Specific objectives of archaeological works;
- Extent of investigation;
- Investigation methodology;
- Anticipated post-investigation actions, including processing, assessment and analysis of finds and samples;
- Reporting;
- Timetable;
- Monitoring arrangements; and
- Health, safety and welfare.

9.1.4 Method statements will be provided to the Client for comment. On receipt of comments from the Client, the RA will produce a final method statement addressing these comments.

9.1.5 Method statements will be submitted to the Archaeological Curator(s) for approval and will include provision for the relevant Archaeological Curator(s) to monitor the progress of the archaeological works, as appropriate to that element, be that through site visits or meetings with the Client, the Contractor(s), and the RA.
10 SCHEME OF INVESTIGATIONS

10.1 Introduction

10.1.1 The Mitigation section above provided a brief overview of the types of further archaeological investigations recommended for A1s, A2s, unknown, and seabed prehistory and other archaeological receptors. The Scheme of Investigations section sets out how these investigations will be undertaken.

10.2 Standards and Guidance

10.2.1 The method statements and specifications in this document are based on archaeological best practice and guidance for offshore development. The principal sources are:

- Identifying and Protecting Palaeolithic Remains: Archaeological Guidance for Planning Authorities and Developers (Historic England 1998);
- Managing Lithic Scatters: Archaeological Guidance for Planning Authorities and Developers (Historic England 2000);
- Military Aircraft Crash Sites: Guidance on their Significance and Future Management (Historic England 2002);
- The Code of Practice for Seabed Developers (Joint Nautical Archaeology Policy Committee and The Crown Estate 2006);
- Conservation Principles, Policies and Guidance for the Sustainable Management of the Historic Environment (Historic England 2008);
- Our Seas – A Shared Resource: High Level Marine Objectives (Department for Environment, Food and Rural Affairs 2009);
- Ships and Boats: Prehistory to Present – Designation Selection Guide (Historic England 2012); and,
- Marine Geophysics Data Acquisition, Processing and Interpretation Guidance Notes (Bates et al. 2013).

10.3 Marine geophysical investigations

10.3.1 The Developer will allow for archaeological involvement in the planning, acquisition and review of any further geophysical surveys, should any be undertaken. For all aspects of marine geophysical investigations, the developer will adhere to standards and guidance. Key points relevant to marine geophysical investigations are set out below.

10.3.2 The specification of any proposed marine geophysical survey whose primary aim is non-archaeological (i.e.: engineering or environmental) will be subject to advice from the RA to ensure that archaeological input is provided at the planning stage and to enable archaeological considerations to be taken into account without compromising the primary objective of the survey.

10.3.3 The archaeological input will take the form of advice from an appropriately qualified marine archaeologist on the following points:

- Available details of sites and/or anomalies identified in the desk-based assessment;
• Archaeological potential of areas where no existing sites and/or anomalies are yet known;
• Geophysical sources/equipment;
• Methodologies, including spacing and orientation of lines and cross lines;
• Source/equipment settings; and
• Requirements for post-processing, interpreting and archiving resulting data.

10.3.4 Where archaeological objectives have been added to a survey whose primary objectives are non-archaeological, consideration will be given to having an archaeologist or geophysicist with appropriate archaeological expertise on-board during the acquisition of data. The on-board archaeologist will advise on the suitability for archaeological purposes of the data being acquired and be able to propose, through communication with the RA, minor changes to the survey method, settings, etc., in order to optimise archaeological results, and thereby minimise the need for repeat surveys.

10.3.5 Where a survey is carried out primarily for archaeological purposes, the specification should be prepared by a suitably qualified archaeologist. In addition, the survey should be carried out by a survey company with appropriate archaeological expertise and including geophysicists with appropriate archaeological expertise on-board if required.

10.3.6 Data sources with the potential for identifying archaeological remains are as follows:
• Sidescan data may identify wrecks and other related debris of all periods that lie (at least in part) above the surface of the seabed;
• Magnetometer data may identify wrecks and other related debris of all periods (though principally post-medieval and modern) on the surface of and under the seabed;
• Sub-bottom profiler data may identify features and deposits that relate to the topography of an area prior to its burial and inundation during the prehistoric period, and buried objects such as wrecks; and
• Bathymetry may be used to characterise wrecks and other related debris of all periods that lie (at least in part) on the surface of the seabed, and can be integrated with sub-bottom profiler data to calculate absolute depths.

10.3.7 New survey data will be submitted for review by an appropriately qualified archaeologist, and will be interpreted by an archaeologist with an appropriate level of expertise. If any further items of interest are identified, the developer, Historic England will be consulted prior to any changes to the mitigation strategy, for example changes to AEZs.

10.3.8 The results of further geophysical interpretation will be compiled as an Archaeological Report, consistent with the provisions on reporting within this WSI (Section 12).

10.4 Marine geoarchaeological investigations

10.4.1 To help frame geoarchaeological investigations of this nature, Wessex Archaeology has developed a five stage approach, encompassing different levels of investigation appropriate to the results obtained, accompanied by formal reporting of the results at the level achieved. The stages are summarised in Table 10.
Table 10: Geoarchaeological programme of analysis

<table>
<thead>
<tr>
<th>Stage</th>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assessment</td>
<td>A desk-based archaeological assessment of the borehole and CPT logs generated by geotechnical contractors aims to establish the likely presence of horizons of archaeological interest and broadly characterise them, as a basis for deciding whether and what Stage 2 archaeological recording is required. The Stage 1 report will state the scale of Stage 2 work proposed.</td>
</tr>
<tr>
<td>2</td>
<td>Geoarchaeological Recording</td>
<td>Archaeological recording of selected retained or new core samples will be undertaken. This will entail the splitting of the cores, with half of each core being cleaned and recorded. The Stage 2 report will state the results of the archaeological recording and will indicate whether any Stage 3 work is warranted.</td>
</tr>
<tr>
<td>3</td>
<td>Sampling and Assessment</td>
<td>Dependent upon the results of Stage 2, sub-sampling and palaeoenvironmental assessment (pollen, diatoms and foraminifera) may be required. Subsamples will be taken from one core-half, with the other core-half retained intact for further sub-sampling, should it be required. Assessment will comprise laboratory analysis of the samples to a level sufficient to enable the value of the palaeoenvironmental material surviving within the cores to be identified. Subsamples will also be taken and retained at this stage in case radiocarbon dating is required during Stage 4. The Stage 3 report will set out the results of each laboratory assessment together with an outline of the archaeological implications of the combined results, and will indicate whether any Stage 4 work is warranted.</td>
</tr>
<tr>
<td>4</td>
<td>Analysis and Dating</td>
<td>Full analysis of pollen, diatoms and/or foraminifera assessed during Stage 3 will be undertaken. Typically, Stage 4 will be supported by radiocarbon dating of suitable subsamples. Stage 4 will result in an account of the successive environments within the coring area, a model of environmental change over time, and an outline of the archaeological implications of the analysis.</td>
</tr>
<tr>
<td>5</td>
<td>Final Report</td>
<td>If required Stage 5 will comprise the production of a final report of the results of the previous phases of work for publication in an appropriate journal. This report will be compiled after the final phase of archaeological work, whichever phase that is.</td>
</tr>
</tbody>
</table>

10.4.2 The assessment undertaken as part the Marine Archaeology Technical Report (Wessex Archaeology 2016a) comprises Stage 1 of this geoarchaeological framework. Recommendations are provided should any further stages of geoarchaeological assessment be deemed necessary.

10.5 Protocol for Archaeological Discoveries

10.5.1 The PAD is intended to apply to development, construction and installation activities where an archaeologist is not present on site and therefore not immediately available, i.e. in those instances where a traditional archaeological scheme of works is not in place (such as a watching brief, evaluation, etc.). It has been successful across a range of marine industries such as marine aggregates (BMAPA and Historic England 2003; 2005) and offshore renewables (ORPAD; The Crown Estate 2010; 2014)

10.5.2 In cases where the Developer has made provision for an archaeologist to be on site, as part of a site investigation, watching brief or specific archaeological works, then the archaeological method statement relating to this provision will take precedence. Where no specific archaeological provision has been made, then this PAD will apply.
10.5.3 The PAD anticipates discoveries being made by Project Staff, who report to a Site Champion on their vessel or site (usually the senior person on site), who then reports to a central Nominated Contact who has been nominated by the Developer to co-ordinate implementation of the Protocol for the scheme. The Nominated Contact will in turn inform the RA (or Implementation Service in the case of ORPAD being used) and the Developer’s Project Manager(s). The RA will in turn liaise with the Nominated Contact, Archaeological Curators and the Developer’s Project Manager(s) as necessary.

10.5.4 It is recognised that, for the Protocol to be effective, participants (such as Site Champions or Project Staff) should receive appropriate training, as the protocol is designed to operate when an archaeologist is not present.

10.5.5 The Site Champion is the person formally appointed by the Developer to be directly responsible for reports arising from a particular activity location. The Site Champion could be a Vessel Master, a Construction Foreman or any other person in a position to control the immediate works.
11 FINDS AND ENVIRONMENTAL

11.1 Artefacts

11.1.1 All artefacts identified from material recovered will be retained, processed and recorded in accordance with the CIfA’s Standard and Guidance for Archaeological Field Evaluations (2014a) and Standard and guidance for the collection, documentation, conservation and research of archaeological material (2014b).

11.1.2 All finds and other items of archaeological interest have an owner, but the law regarding ownership varies according to the character of the material, the environment in which it was found, and national legislation. From the point of discovery, all finds will be held by the Archaeological Contractor in appropriate conditions pending further recording, investigation, study or conservation. Ownership will be transferred to the institution receiving the archive unless other arrangements are agreed with the Archaeological Curators.

11.1.3 Artefacts that are exposed in the course of scheme works will be recovered by the Archaeological Contractor or, where recovery is impracticable, recorded. All finds will be recorded by context and in the case of significant objects (‘special finds’), in three dimensions using a unique sequence of reference numbers.

11.1.4 Recovered objects will be selected, retained or disposed of in accordance with the policy agreed with the institution receiving the archive, and in consultation with the Archaeological Curators.

11.1.5 Subject to the agreement reached with the receiving institution regarding selection, retention and disposal of material, the Archaeological Contractor will retain all recovered objects unless they are undoubtedly of modern or recent origin. The presence of discarded objects will, however, be noted on context records. In these circumstances sufficient material will be retained to characterise the date and function of the deposit from which it was recovered.

11.1.6 In the event of the discovery of unexpected, unusual or extremely fragile and delicate objects and deposits, the RA, the Developer and the Archaeological Curators will be notified immediately. Additional work required to recover, record, analyse, conserve and archive such objects and deposits will be agreed in consultation with the Archaeological Curators.

11.1.7 In the event of the discovery of items that may be eligible for legal protection, the Archaeological Contractor will immediately notify the RA, who will notify the relevant legal authority as soon as possible. The Developer and the Archaeological Curators will be notified as soon as possible.

11.1.8 The RA will prepare and implement a finds monitoring and maintenance programme, which will cross-refer to finds management/monitoring systems maintained by the Archaeological Contractor(s)/Developer.

11.1.9 Contingency will be made for specialist advice and conservation needs on-site should unexpected, unusual or extremely fragile and delicate objects be recovered, and the advice and input from an appropriate Conservation Service will be sought through the Archaeological Contractor’s Finds Manager. A range of internal and external specialists will be consulted as appropriate.
11.1.10 Objects that require immediate conservation treatment to prevent deterioration will be treated according to guidelines laid down in *First Aid for Finds* (Watkinson 1998) and *First Aid for Underwater Finds* (Robinson 1998). A full record will be made of any treatment given.

11.1.11 Finds will be primarily conserved, bagged and boxed in accordance with guidelines set out in the United Kingdom’s Institute for Conservation’s *Conservation Guidelines No 2* (UKIC 1984).

11.1.12 Finds and other items of archaeological interest recovered offshore in the course of investigation are the property of The Crown Estate as the landowner, with the exception of all human remains, and ‘wreck’ for the purposes of the Merchant Shipping Act 1995.

11.2 Ordnance

11.2.1 In the event that any item(s) of ordnance is discovered it should be treated with extreme care as it may not be inert. Industry guidelines provided by the Developer must be followed prior to any recording of items for archaeological purposes.

11.2.2 Depending on the items’ age, ordnance may be of archaeological interest, especially when discovered with other related material from a wreck, either shipwreck or aircraft, and should be recorded if it is safe to do so.

11.2.3 Any firearms and ammunition (e.g. from a crashed military aircraft) are likely to be subject to the Firearms Acts (various dates). Ammunition should be regarded as ordnance, irrespective of its size.

11.3 Treasure

11.3.1 In the event of the discovery of any material covered or potentially covered by the Treasure Act 1996, the Client and the Curator(s) will be notified immediately. All necessary information required by the Treasure Act 1996 (i.e. finder, location, material, date, associated items, etc.) will be reported to the Coroner within 14 days. Items falling under the Treasure Act will be removed from the site by the RA and stored in a secure location, pending a decision by the Coroner.

11.4 Aircraft

11.4.1 The majority of aircraft wrecks are military and therefore fall under the Protection of Military Remains Act 1986. Any finds that are suspected of being military aircraft will be reported immediately to the RA. In the case of a military aircraft being investigated under licence, any human remains will be reported immediately.

11.5 Wreck

11.5.1 Archaeological artefacts that have come from a ship are ‘wreck’ for the purposes of the Merchant Shipping Act 1995. The Client, via the RA, should ensure that the Receiver of Wreck is notified within 28 days of recovery, for all items of wreck that have been recovered.

11.6 Environmental

11.6.1 Deposits (i.e. sediments) of archaeological/historical/cultural interest that do not comprise artefactual remains will not be considered to be ‘finds’ but may be subject to sampling. Any artefactual material subsequently discovered in the course of processing such samples would be treated as finds thereafter.
11.6.2 For each programme of archaeological work, environmental sampling strategies and methods – including methods for processing, assessing and/or analysing samples – will be set out in the method statement for the archaeological work.

11.6.3 Approaches and methods will be consistent with *Environmental Archaeology: a guide to the theory and practice of methods, from sampling and recovery to post-excavation* (Centre for Archaeology Guidelines, English Heritage 2011) and *Geoarchaeology: using earth sciences to understand the archaeological record* (Historic England 2015).

11.7 Conservation and storage

11.7.1 All recovered materials will be subject to a Conservation Assessment to gauge whether special measures are required while the material is being held. This Conservation Assessment will be carried out by the RA or an Archaeological Contractor with an appropriate level of expertise, with advice from appropriate specialists. The RA or an Archaeological Contractor with appropriate expertise will implement recommendations arising from the assessment. If no special measures are recommended, finds will be conserved, bagged, boxed and stored in accordance with industry guidelines (CIfA 2014b: *Standard and guidance for the collection, storage, documentation, conservation and research of archaeological materials*).

12 REPORTING

12.1.1 Reports will be prepared in accordance with the relevant Standards and Guidance documents produced by the CIfA and will typically include:

- A non-technical summary;
- The aims and methods of the work;
- The results of the work including finds and environmental remains;
- A statement of the potential of the results;
- Proposal for further analysis and publication; and
- Illustrations and appendices to support the report.
13 STORAGE AND CURATION

13.1 Museum

13.1.1 It is recommended that the project archive be deposited with the Devon Archives and Local Studies Service. Deposition of any finds with the archive will only be carried out with the full agreement of The Crown Estate or the owner (as confirmed by the Receiver of Wreck).

13.1.2 If the archive is not accepting archaeological archives at the close of the project, every effort will be made to identify a suitable repository for the archive resulting from the fieldwork, and if this is not possible, Wessex Archaeology will initiate discussions with the local planning authority in an attempt to resolve the issue. If no suitable repository is identified, Wessex Archaeology will continue to store the archive, but may institute a charge to the Client for ongoing storage beyond a set period.

13.2 Preparation of archive

13.2.1 It is accepted practice to keep project archives, including written, drawn, photographic and artefactual elements together whenever possible, along with a summary of the contents of the archive, and to deposit them in appropriate receiving institutions once their contents are in the public domain.

13.2.2 The complete site archive, which may include paper records, photographic records, graphics, artefacts, ecofacts and digital data, will be prepared following standard conditions for the acceptance of excavated archaeological material by the Devon Archives and Local Studies Service, and in general following nationally recommended guidelines (Society of Museum Archives 1995; Brown 2011; ADS 2013; Archaeology Archives Forum 2007; CfA 2014c; UKIC 1984 and Walker 1990). The archive will be deposited with Devon Archives and Local Studies Service once the contents are in the public domain.

13.2.3 The relevant Archaeological Curator(s) and the RA will agree with the receiving institution a policy for the selection, retention and disposal of recovered or excavated material, and confirm requirements in respect of the format, presentation and packaging of archive records and materials. The receiving institution will be notified in advance of any fieldwork.

13.2.4 All digital data will be considered part of the primary archive and will accord with the procedures recommended by The Crown Estate, Marine Environment Data and Information Network (MEDIN), Archaeological Data Service (ADS) and the Archaeological Curator(s).

13.2.5 Data will be compiled in a format suitable for submission of Monument, Event and Source records for entry into the NRHE (offshore) and the Devon Historic Environment Record (inshore).

13.2.6 Following completion of the scheme of construction, the Client will produce an OASIS form for any completed and agreed Archaeological Reports produced as a result of this WSI and will submit a copy as a PDF file to Historic England’s NRHE (oasis@english-heritage.org.uk).

13.3 Discard policy
13.3.1 Wessex Archaeology follows the guidelines set out in *Selection, Retention and Dispersal* (Society of Museum Archaeologists 1993) which allows for the discard of selected artefact and ecofact categories which are not considered to warrant any future analysis. Any discard of artefacts will be fully documented in the project archive.

13.3.2 The discard of environmental remains and samples follows nationally recommended guidelines (SMA 1993; SMA 1995; English Heritage 2011).

13.4 Security copy

13.4.1 In line with current best practice (e.g. Brown 2011); on completion of the project a security copy of the written records will be prepared, in the form of a digital PDF/A file. A PDF/A is an ISO-standardised version of the Portable Document Format (PDF) designed for the digital preservation of electronic documents through omission of features ill-suited to long-term archiving.

14 QUALITY ASSURANCE PROCEDURES

14.1 Internal quality standards

14.1.1 Wessex Archaeology is an ISO 9001 accredited organisation (certificate number FS 606559), confirming the operation of a Quality Management System which complies with the requirements of ISO 9001:2008 – covering professional archaeological and heritage advice and services. The award of the ISO 9001 certificate, independently audited by the British Standards Institution (BSI), demonstrates WA’s commitment to providing quality heritage services to our clients. ISO (the International Organisation for Standardisation) is the most recognised standards body in the world, helping to drive excellence and continuous improvement within businesses.

14.1.2 Wessex Archaeology operates a computer-assisted Project Management system. Projects are assigned to individual managers who are responsible for the successful completion of all aspects of the project. This includes monitoring project progress and quality; control budgets from inception to completion; all aspects of Health and Safety. At all stages the manager will carefully assess and monitor performance of staff and adherence to objectives, timetables and budgets, while the manager's performance is monitored in turn by the Team Leader/Regional Manager.

14.1.3 All work is monitored and checked whilst in progress on a regular basis by the Project Manager, and all reports and other documents are checked by the Team Leader/Technical Manager, or Regional Manager, before being issued. A series of guideline documents or manuals form the basis for all work. The Technical Managers in the Graphics, Finds & Analysis and GeoServices and IT Sections provide additional assistance and advice.

14.1.4 All staff are responsible for following Wessex Archaeology’s quality standards but the overall adherence to and setting of these standards is the responsibility of the Executive Management Team in consultation with the Team Leaders/Regional Managers who also ensure projects are adequately programmed and resourced within Wessex Archaeology’s portfolio of project commitments.

15 HEALTH AND SAFETY

15.1 Health and safety
15.1.1 Health and Safety considerations will be of paramount importance in conducting all fieldwork. Safe working practices will override archaeological considerations at all times.

15.1.2 Wessex Archaeology will supply trained, competent and current staff to perform the tasks and operate the equipment used on site.

15.1.3 All work will be carried out in accordance with the Health and Safety at Work Act 1974 and the Management of Health and Safety Regulations 1999, and all other applicable Health and Safety legislation, regulations and codes of practice in force at the time.

15.1.4 Wessex Archaeology will supply a copy of the company’s Health and Safety Policy and a Risk Assessment to the Client before the commencement of any fieldwork. The Risk Assessment will have been read, understood and signed by all staff attending the Site before any groundwork commences.

15.1.5 WA staff will comply with the Personal Protective Equipment (PPE) requirements for working on site (hard hat, safety boots, high visibility clothing, ear, eye and hand protection) and any other specific additional requirements of the Principal Contractor.

15.1.6 All work will be carried out in accordance with the Health and Safety at Work etc. Act 1974 Health and Safety Management Regulations 1992, the Standing Conference of Archaeological Unit Managers (SCAUM) health and safety manual, Health and Safety in Field Archaeology 2007, and all other relevant Health and Safety legislation, regulations and codes of practice in force at the time.

16 COPYRIGHT

16.1 Archive and Report Copyright

16.1.1 The full copyright of the written/illustrative archive relating to the site will be retained by Wessex Archaeology under the Copyright, Designs and Patents Act 1988 with all rights reserved. The Client will be licenced to use each report in all matters directly relating to the project as described in the specification. The museum/receiving organisation, however, will be granted an exclusive licence for the use of the archive for educational purposes, including academic research, providing that such use shall be non-profitmaking, and conforms to the Copyright and Related Rights Regulations 2003.

16.1.2 Once the scheme is completed and/or contents of the archive are in the public domain, information relating to the project will be deposited with the Historic Environment Record (HER) where it can be freely copied without reference to Wessex Archaeology for the purposes of archaeological research or Development Control within the planning process.

16.2 Third Party Data Copyright

16.2.1 This document, the report and the project archive may contain material that is non-Wessex Archaeology copyright (e.g. Ordnance Survey, British Geological Survey, Crown Copyright), or the intellectual property of third parties, which Wessex Archaeology are able to provide for limited reproduction under the terms of our own copyright licences, but for which copyright itself is non-transferable by Wessex Archaeology. Users remain bound by the conditions of the Copyright, Designs and Patents Act 1988 with regard to multiple copying and electronic dissemination of such material.

17 REFERENCES
ADS 2013 Caring for Digital Data in Archaeology: a guide to good practice. Archaeology Data Service & Digital Antiquity Guides to Good Practice

Archaeology Archives Forum 2007 Archaeological Archives: A guide to best practice in creation, compilation, transfer and curation.

Brown, DH 2011 Archaeological archives; a guide to best practice in creation, compilation, transfer and curation, Archaeological Archives Forum (revised edition)

Chartered Institute for Archaeologists 2014a Standard and guidance for archaeological field evaluation, Reading

Chartered Institute for Archaeologists 2014b Standard and guidance for the collection, documentation, conservation and research of archaeological materials Reading

Chartered Institute for Archaeologists 2014c Standard and guidance for the creation, compilation, transfer and deposition of archaeological archives Reading

Crown Estate, The 2010 Model Clauses for Archaeological Written Schemes of Investigation: Offshore Renewables Projects. Published guidance by Wessex Archaeology Ref 73830.

FAB Link 2016 FAB Link Environmental Appraisal (Draft).

Historic England 2015 Geoarchaeology: Using Earth Sciences to understand the archaeological record. London

Joint Nautical Archaeology Policy Committee, 2006, Code of Practice for Seabed Development, JNAPC

Robinson, W 1998 *First Aid for Underwater Finds.* Archetype Publications Ltd

Society of Museum Archaeologists 1993 *Selection, Retention and Dispersal of Archaeological Collections*

Society of Museum Archaeologists 1995 *Towards an Accessible Archaeological Archive*

Standing Conference of Archaeological Unit Managers 2007 *Health and Safety in Field Archaeology: Manual*, SCAUM/FAME

Walker, K 1990 *Guidelines for the preparation of excavation archives for long-term storage*, UKIC

Wessex Archaeology 2016b *Marine Archaeology* Chapter 15 of Environmental Appraisal, FAB Link Ltd 2016. Unpublished report reference 112690.02
APPENDICES

Appendix 1: Palaeogeographic features of archaeological interest

<table>
<thead>
<tr>
<th>WA ID</th>
<th>Classification</th>
<th>Archaeological Discrimination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7500</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Possible simple cut and fill feature cut into bedrock, identified on a number of survey lines. Poorly defined basal reflector with single phase of acoustically unstructured fill. Could be the remnant of a fluviatile feature, or be part of the bedrock structure.</td>
</tr>
<tr>
<td>7501</td>
<td>Complex Cut and Fill</td>
<td>P2</td>
<td>Distinct cut and fill feature cut into bedrock. Defined basal reflector with two phases of fill, a lower unstructured unit and an upper unit characterised by poorly defined sub-parallel internal reflectors separated by a well-defined reflector. Could be a remnant fluviatile feature, or part of the bedrock. Depth range: 0.9m - 2.1m BSB.</td>
</tr>
<tr>
<td>7502</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Possible cut and fill feature cut into bedrock, identified on a number of survey lines. No real basal reflector, but feature is characterised by strong sub-parallel internal reflectors. Feature is of unknown age, and could represent a remnant fluviatile channel, or be an internal feature of the bedrock. Depth range: 1.3m - 4.7m BSB.</td>
</tr>
<tr>
<td>7503</td>
<td>Channel</td>
<td>P2</td>
<td>Broad, distinct, complex channel feature cut into the bedrock. Well defined basal reflector with a number of phases of fill. Earlier phases appear relatively acoustically unstructured, with a high amplitude reflector possibly representing a hiatus or very different sediment band. Later smaller cuts and fills area acoustically chaotic or characterised by sub-parallel internal reflectors. Earlier feature may be Eocene or older in age, although some of the younger cuts may be of archaeological potential. Whole feature is overlain by approx. 5m of sand and gravel. Depth range: 4.8m - 13.0m BSB.</td>
</tr>
<tr>
<td>7504</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Possible cut and fill feature cut into bedrock, identified on a number of survey lines. Well defined basal reflector, and feature is characterised by strong sub-parallel internal reflectors. Overlain by relatively thick sandy sediment. One of two adjacent, and possibly related, features of unknown age. Could represent a remnant fluviatile channel, or be an internal feature of the bedrock. Depth range: 4.1m - 5.8m BSB.</td>
</tr>
<tr>
<td>7505</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Possible cut and fill feature cut into bedrock, identified on a number of survey lines. Well defined basal reflector, and feature is characterised by strong sub-parallel internal reflectors. Overlain by relatively thick sandy sediment. One of two adjacent, and possibly related, features of unknown age. Could represent a remnant fluviatile channel, or be an internal feature of the bedrock. Depth range: 4.2m - 5.8m BSB.</td>
</tr>
<tr>
<td>7506</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Distinct cut and fill feature cut into bedrock, only identified on one survey line. Distinct basal reflector with single phase of acoustically unstructured fill. Possible thin basal lag layer, although this is uncertain. Possible remnant of a fluviatile system, although could be an older feature part of the bedrock.</td>
</tr>
<tr>
<td>7507</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Possible cut and fill feature cut into bedrock, identified on a number of survey lines. No real basal reflector, but feature is defined by strong sub-parallel internal reflectors and blanks out the underlying data. One of three adjacent, and possibly related, features of unknown age. Could represent a remnant fluviatile channel, or be an internal feature of the bedrock. Depth range: 1.8m - 2.7m BSB.</td>
</tr>
<tr>
<td>7508</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Possible cut and fill feature cut into bedrock, identified on a number of survey lines. No real basal reflector, but feature is defined by strong sub-parallel internal reflectors and blanks out the underlying data. One of three adjacent, and possibly related, features of unknown age. Could represent a remnant fluviatile channel, or be an internal feature of the bedrock. Depth range: 2.0m - 3.9m BSB.</td>
</tr>
<tr>
<td>WA ID</td>
<td>Classification</td>
<td>Archaeological Discrimination</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>7509</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Possible cut and fill feature cut into bedrock, identified on a number of survey lines. No real basal reflector, but feature is defined by strong sub-parallel internal reflectors. One of three adjacent, and possibly related, features of unknown age. Could represent a remnant fluvial channel, or be an internal feature of the bedrock. Depth range: 1.8m - 3.6m BSB.</td>
</tr>
<tr>
<td>7510</td>
<td>Channel</td>
<td>P1</td>
<td>Broad, distinct channel feature identified on a number of survey lines. Relatively well defined basal reflector with two possible phases of fill separated by a strong internal reflector. Lower fill is acoustically unstructured, possibly a lag deposit, upper fill contains weak subparallel internal reflectors and has been found by coring to comprise silty organic clay with plant remains. Probable remnant fluvial channel. Depth range: 1.8m - 5.8m BSB.</td>
</tr>
<tr>
<td>7511</td>
<td>Channel</td>
<td>P1</td>
<td>Distinct channel feature identified on a number of survey lines. Relatively well defined basal reflector with a single phase of acoustically unstructured fill. Possibly related to adjacent channel feature 7510 and filled with similar silty, organic clay. Possible remnant fluvial channel. Depth range: 1.2m - 3.7m BSB.</td>
</tr>
<tr>
<td>7512</td>
<td>Simple Cut and Fill</td>
<td>P2</td>
<td>Very small, simple cut and fill feature cut into bedrock. Only identified on one survey line. Well defined basal reflector with single phase of possibly acoustically layered fill. Possible remnants of a fluvial feature, although age is uncertain. Depth range: 0.8m - 1.4m BSB.</td>
</tr>
</tbody>
</table>
Appendix 2: Seabed features of archaeological interest

Co-ordinates are in WGS84 UTM Zone 30N. The positional accuracy of features recorded from the archaeological assessment of geophysical survey data is estimated ±10m.

<table>
<thead>
<tr>
<th>WA ID</th>
<th>Classification</th>
<th>Easting</th>
<th>Northing</th>
<th>Archaeological Discrimination</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Height (m)</th>
<th>Magnetic Amplitude (nT)</th>
<th>Notes</th>
<th>External Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7000</td>
<td>Magnetic</td>
<td>477967</td>
<td>5608227</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>Relatively small but distinct magnetic anomaly, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td>-</td>
</tr>
<tr>
<td>7001</td>
<td>Magnetic</td>
<td>477968</td>
<td>5608219</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>Relatively small but distinct magnetic anomaly, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td>-</td>
</tr>
<tr>
<td>7006</td>
<td>Debris</td>
<td>479782</td>
<td>5604506</td>
<td>A2</td>
<td>6.0</td>
<td>2.1</td>
<td>0.1</td>
<td>-</td>
<td>Small area of dark reflectors with small shadows, possibly in a rectangular shape. No associated magnetic anomaly. Possible non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7007</td>
<td>Rope / Chain</td>
<td>480037</td>
<td>5604218</td>
<td>A2</td>
<td>89.0</td>
<td>1.7</td>
<td>0.2</td>
<td>-</td>
<td>Curvilinear dark reflector with small shadow, identified on a number of survey lines. No associated magnetic anomaly. Possible length of partially buried rope or chain or other linear debris.</td>
<td>-</td>
</tr>
<tr>
<td>7010</td>
<td>Debris</td>
<td>482369</td>
<td>5600935</td>
<td>A2</td>
<td>8.0</td>
<td>1.7</td>
<td>0.0</td>
<td>-</td>
<td>Distinct, elongate dark reflector, possibly with a small shadow but this is uncertain. No associated magnetic anomaly. Possible piece of non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7011</td>
<td>Debris Field</td>
<td>483159</td>
<td>5600616</td>
<td>A2</td>
<td>132.0</td>
<td>38.4</td>
<td>0.7</td>
<td>62</td>
<td>Irregular area of dark and bright reflectors, associated with a distinct magnetic anomaly. Possible debris field containing ferrous debris, or could be a partial exposure of underlying bedrock.</td>
<td>-</td>
</tr>
<tr>
<td>7012</td>
<td>Magnetic</td>
<td>484675</td>
<td>5599862</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>Relatively small but distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td>-</td>
</tr>
<tr>
<td>7014</td>
<td>Magnetic</td>
<td>489861</td>
<td>5597758</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>Relatively small but distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td>-</td>
</tr>
<tr>
<td>7016</td>
<td>Magnetic</td>
<td>495403</td>
<td>5595756</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>53</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>WA ID</td>
<td>Classification</td>
<td>Easting</td>
<td>Northing</td>
<td>Archaeological Discrimination</td>
<td>Length (m)</td>
<td>Width (m)</td>
<td>Height (m)</td>
<td>Magnetic Amplitude (nT)</td>
<td>Notes</td>
<td>External Reference</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>----------</td>
<td>----------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------------------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>7021</td>
<td>Recorded Obstruction</td>
<td>497429</td>
<td>5594660</td>
<td>A3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>The recorded location of the remains of a mobile loading crane, recorded as being lost during transfer operations between the tankers Naticina and Berge Duke in 1982. Not identified within the geophysical data, and is possibly unreliably positioned. Not of archaeological potential, but retained here due to presence in UKHO and SeaZone records.</td>
<td>18344 (UKHO), 23600000042001101, 637000001000170 (SeaZone)</td>
</tr>
<tr>
<td>7022</td>
<td>Magnetic</td>
<td>497809</td>
<td>5594792</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>150</td>
<td>Large, distinct magnetic monopole identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible significant piece of buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7025</td>
<td>Magnetic</td>
<td>499333</td>
<td>5594183</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>Relatively small but distinct magnetic dipole, tentatively identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td>-</td>
</tr>
<tr>
<td>7027</td>
<td>Dark Reflector</td>
<td>510031</td>
<td>5586437</td>
<td>A2</td>
<td>3.8</td>
<td>3.6</td>
<td>0.2</td>
<td>-</td>
<td>Irregular dark reflector with irregular shadow, no associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7028</td>
<td>Dark Reflector</td>
<td>510017</td>
<td>5586372</td>
<td>A2</td>
<td>7.8</td>
<td>2.0</td>
<td>0.1</td>
<td>-</td>
<td>Irregular dark reflector with irregular shadow, situated within an associated scour. No associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7029</td>
<td>Seafloor Disturbance</td>
<td>510597</td>
<td>5585863</td>
<td>A2</td>
<td>7.5</td>
<td>4.8</td>
<td>0.0</td>
<td>-</td>
<td>Area of irregular dark reflectors with shadows with possible associated scour. No associated magnetic anomaly. Could be a natural feature or indicate partially buried non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7030</td>
<td>Magnetic</td>
<td>510830</td>
<td>5585752</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7031</td>
<td>Magnetic</td>
<td>511403</td>
<td>5585210</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>37</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7033</td>
<td>Dark Reflector</td>
<td>512232</td>
<td>5584379</td>
<td>A2</td>
<td>0.9</td>
<td>0.7</td>
<td>1.5</td>
<td>-</td>
<td>Poorly defined dark reflector with distinct shadow, but without an associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7034</td>
<td>Dark Reflector</td>
<td>512201</td>
<td>5584385</td>
<td>A2</td>
<td>2.2</td>
<td>1.0</td>
<td>1.4</td>
<td>-</td>
<td>Poorly defined dark reflector with distinct shadow, but without an associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>WA ID</td>
<td>Classification</td>
<td>Easting</td>
<td>Northing</td>
<td>Archaeological Discrimination</td>
<td>Length (m)</td>
<td>Width (m)</td>
<td>Height (m)</td>
<td>Magnetic Amplitude (nT)</td>
<td>Notes</td>
<td>External Reference</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>7037</td>
<td>Magnetic</td>
<td>512427</td>
<td>5584242</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td></td>
</tr>
<tr>
<td>7039</td>
<td>Magnetic</td>
<td>513701</td>
<td>5583046</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>Relatively small but distinct magnetic dipole, tentatively identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7040</td>
<td>Magnetic</td>
<td>514517</td>
<td>5582096</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>87</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td></td>
</tr>
<tr>
<td>7041</td>
<td>Magnetic</td>
<td>514210</td>
<td>5582027</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td></td>
</tr>
<tr>
<td>7042</td>
<td>Magnetic</td>
<td>514615</td>
<td>5581459</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>Relatively small but distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7047</td>
<td>Magnetic</td>
<td>521400</td>
<td>5573874</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>Relatively small but distinct magnetic dipole, tentatively identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7049</td>
<td>Magnetic</td>
<td>524788</td>
<td>5570882</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td></td>
</tr>
<tr>
<td>7050</td>
<td>Dark Reflector</td>
<td>525315</td>
<td>5570441</td>
<td>A2</td>
<td>1.6</td>
<td>0.9</td>
<td>0.7</td>
<td>-</td>
<td>Small, elongate dark reflector with small shadow and associated small scour. No associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td></td>
</tr>
<tr>
<td>7051</td>
<td>Magnetic</td>
<td>526228</td>
<td>5569998</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>Relatively small but distinct magnetic monopole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7052</td>
<td>Magnetic</td>
<td>526298</td>
<td>5569936</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>Relatively small but distinct magnetic monopole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>WA ID</td>
<td>Classification</td>
<td>Easting</td>
<td>Northing</td>
<td>Archaeological Discrimination</td>
<td>Length (m)</td>
<td>Width (m)</td>
<td>Height (m)</td>
<td>Magnetic Amplitude (nT)</td>
<td>Notes</td>
<td>External Reference</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7056</td>
<td>Dark Reflector</td>
<td>527907</td>
<td>5568167</td>
<td>A2</td>
<td>2.3</td>
<td>1.6</td>
<td>0.5</td>
<td>-</td>
<td>Dark reflector with shadow but without an associated magnetic anomaly. Probably a natural feature, but may be non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7057</td>
<td>Dark Reflector</td>
<td>527911</td>
<td>5568207</td>
<td>A2</td>
<td>6.1</td>
<td>0.5</td>
<td>0.5</td>
<td>-</td>
<td>Irregular dark reflector, possibly two adjacent dark reflectors, with shadows. No associated magnetic anomaly. Probably a natural feature, but may be non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7060</td>
<td>Magnetic</td>
<td>528296</td>
<td>5567782</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7062</td>
<td>Debris</td>
<td>528822</td>
<td>5567707</td>
<td>A2</td>
<td>4.6</td>
<td>0.8</td>
<td>1.7</td>
<td>9</td>
<td>Large, distinct dark reflector with large shadow, tentatively associated with a small magnetic anomaly. Possible ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7063</td>
<td>Dark Reflector</td>
<td>529604</td>
<td>5566895</td>
<td>A2</td>
<td>3.9</td>
<td>1.3</td>
<td>1.5</td>
<td>-</td>
<td>Distinct dark reflector with large, distinct shadow but without an associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7064</td>
<td>Magnetic</td>
<td>530123</td>
<td>5566174</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>58</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7065</td>
<td>Magnetic</td>
<td>530377</td>
<td>5565951</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>Distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7066</td>
<td>Dark Reflector</td>
<td>530714</td>
<td>5565978</td>
<td>A2</td>
<td>5.0</td>
<td>2.2</td>
<td>0.7</td>
<td>-</td>
<td>Irregular dark reflector with more than one shadow, possible a number of adjacent anomalies connect by the same scour/depression. No associated magnetic anomaly. Could be natural or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7067</td>
<td>Dark Reflector</td>
<td>530675</td>
<td>5565768</td>
<td>A2</td>
<td>5.4</td>
<td>4.0</td>
<td>0.0</td>
<td>-</td>
<td>Irregular, curved dark reflector without a shadow or associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7071</td>
<td>Magnetic</td>
<td>531812</td>
<td>5564674</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44</td>
<td>Distinct magnetic monopole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7072</td>
<td>Magnetic</td>
<td>531873</td>
<td>5564619</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>Small but distinct magnetic monopole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td>-</td>
</tr>
<tr>
<td>WA ID</td>
<td>Classification</td>
<td>Easting</td>
<td>Northing</td>
<td>Archaeological Discrimination</td>
<td>Length (m)</td>
<td>Width (m)</td>
<td>Height (m)</td>
<td>Magnetic Amplitude (nT)</td>
<td>Notes</td>
<td>External Reference</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---------</td>
<td>----------</td>
<td>------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7073</td>
<td>Magnetic</td>
<td>532373</td>
<td>5564046</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7075</td>
<td>Magnetic</td>
<td>532373</td>
<td>5564046</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7076</td>
<td>Magnetic</td>
<td>532472</td>
<td>5563865</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7077</td>
<td>Dark Reflector</td>
<td>533011</td>
<td>5563409</td>
<td>A2</td>
<td>5.3</td>
<td>0.9</td>
<td>0.5</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7078</td>
<td>Magnetic</td>
<td>532908</td>
<td>5563051</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7079</td>
<td>Magnetic</td>
<td>534013</td>
<td>5561947</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7081</td>
<td>Dark Reflector</td>
<td>534045</td>
<td>5561622</td>
<td>A2</td>
<td>3.2</td>
<td>2.7</td>
<td>0.9</td>
<td>-</td>
<td>Square dark reflector with shadow located in an area of mobile seabed sediment. No associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7082</td>
<td>Dark Reflector</td>
<td>534268</td>
<td>5561459</td>
<td>A2</td>
<td>4.6</td>
<td>0.8</td>
<td>0.6</td>
<td>-</td>
<td>Dark reflector with shadow and surrounding depression/scour. No associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>7083</td>
<td>Magnetic</td>
<td>533981</td>
<td>5561524</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>Small but distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td>-</td>
</tr>
<tr>
<td>7085</td>
<td>Magnetic</td>
<td>534182</td>
<td>5561275</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>574</td>
<td>Large, distinct magnetic dipole identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible significant piece of buried ferrous debris.</td>
<td>-</td>
</tr>
<tr>
<td>WA ID</td>
<td>Classification</td>
<td>Easting</td>
<td>Northing</td>
<td>Archaeological Discrimination</td>
<td>Length (m)</td>
<td>Width (m)</td>
<td>Height (m)</td>
<td>Magnetic Amplitude (nT)</td>
<td>Notes</td>
<td>External Reference</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>------------------------</td>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>7087</td>
<td>Dark Reflector</td>
<td>534886</td>
<td>5560771</td>
<td>A2</td>
<td>4.5</td>
<td>1.8</td>
<td>0.8</td>
<td>-</td>
<td>Distinct, elongate dark reflector with large, distinct shadow. No associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td></td>
</tr>
<tr>
<td>7089</td>
<td>Dark Reflector</td>
<td>535541</td>
<td>5559715</td>
<td>A2</td>
<td>6.5</td>
<td>5.8</td>
<td>0.2</td>
<td>-</td>
<td>Distinct dark reflector with large shadow, identified within the sidescan sonar and multibeam bathymetry data. No associated magnetic anomaly. Could be a natural feature or non-ferrous debris. Close to similar feature 7090.</td>
<td></td>
</tr>
<tr>
<td>7090</td>
<td>Dark Reflector</td>
<td>535530</td>
<td>5559693</td>
<td>A2</td>
<td>4.2</td>
<td>1.8</td>
<td>1.6</td>
<td>-</td>
<td>Distinct dark reflector with large shadow, identified within the sidescan sonar and multibeam bathymetry data. No associated magnetic anomaly. Could be a natural feature or non-ferrous debris. Close to similar feature 7089.</td>
<td></td>
</tr>
<tr>
<td>7092</td>
<td>Dark Reflector</td>
<td>535948</td>
<td>5559080</td>
<td>A2</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>-</td>
<td>Dark reflector with large distinct shadow, but without an associated magnetic anomaly. Could be a natural feature or non-ferrous debris.</td>
<td></td>
</tr>
<tr>
<td>7094</td>
<td>Magnetic</td>
<td>537337</td>
<td>5557744</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>Relatively small but distinct magnetic monopole, identified on overlapping data sets. No associated sidescan sonar or multibeam bathymetry contact. Possible small piece of buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7097</td>
<td>Magnetic</td>
<td>538948</td>
<td>5555705</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>Small but distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7103</td>
<td>Magnetic</td>
<td>542427</td>
<td>5551286</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>Small but distinct magnetic monopole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7105</td>
<td>Magnetic</td>
<td>543887</td>
<td>5549435</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>Small but distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7106</td>
<td>Magnetic</td>
<td>543961</td>
<td>5548877</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td>Small but distinct magnetic monopole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
<tr>
<td>7108</td>
<td>Magnetic</td>
<td>545041</td>
<td>5547503</td>
<td>A2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>Small but distinct magnetic dipole, identified on a number of survey lines. No associated sidescan sonar or multibeam bathymetry contact. Possible buried ferrous debris or a natural feature.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Palaeogeographic features of archaeological potential (1 of 4)

Legend

- Territorial Sea Limit
- FAB Link Marine Cable Corridor
 - Study area in UK Waters
 - Study area in French EEZ
 - Study area in Alderney & Guernsey Waters
 - Cable route in French Territorial Waters
- Geotechnical samples referenced in the text
- Data example locations

Sections by shallow stratigraphy
- Bedrock with Eocene Clay, Lag Gravel and Seabed
- Bedrock with Lag Gravel and Relict Seabed Sediment
- Bedrock with Lag Gravel and Seabed Sediment
- Bedrock with Seabed/Intertidal Sediment
- Bedrock with Thin Seabed Sediment
- Hurd Deep

Identified palaeogeographic features
- Channel
- Complex Cut and Fill
- Simple Cut and Fill
- Fine Grained Deposit

Table 1: Data example locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC_BS-5</td>
<td>Geotechnical sample</td>
</tr>
<tr>
<td>VC_AB-133</td>
<td>Geotechnical sample</td>
</tr>
<tr>
<td>J5A</td>
<td>Geotechnical sample</td>
</tr>
<tr>
<td>J5B</td>
<td>Geotechnical sample</td>
</tr>
<tr>
<td>J5C</td>
<td>Geotechnical sample</td>
</tr>
</tbody>
</table>

This data is Copyright 2012 OpenStreetMap contributors. It is available under the Open Database License (ODbL). For more information see http://www.openstreetmap.org/copyright

Contains Ordnance Survey data © Crown copyright and database right 2016.
Figure 2: Palaeogeographic features of archaeological potential (2 of 4)

Legend
- Territorial Sea Limit
- FAB Link Marine Cable Corridor
- Study area in UK Waters
- Study area in French EEZ
- Cable route in French Territorial Waters
- Geotechnical samples referenced in the text
- Data example locations

Sections by shallow stratigraphy
- Bedrock with Eocene Clay, Lag Gravel and Seabed Sediment
- Bedrock with Lag Gravel and Relict Seabed Sediment
- Bedrock with Lag Gravel and Seabed Sediment
- Bedrock with Seabed/Intertidal Sediment
- Bedrock with Thin Seabed Sediment
- Hurd Deep

Identified palaeogeographic features
- Channel
- Complex Cut and Fill
- Simple Cut and Fill
- Fine Grained Deposit

Дата: 27/07/2016
Проецирование: WGS_1984_UTM_Zone_30N
Сферида: WGS_1984
Датум: D_WGS_1984
Источник данных: -
Ссылка на файл: 112690_WSI_Fig02
Создано: KJF
Рассмотрено: -
Утверждено: -

© 2012 OpenStreetMap участники. Оно доступно под Лицензией Open Database (ODbL). Для более информации посетите https://www.openstreetmap.org/copyright
Figure 4: Palaeogeographic features of archaeological potential (4 of 4)

Legend
- UK-France Median Line
- FAB Link Marine Cable Corridor
- Study area in UK Waters
- Study area in French EEZ
- Study area in Alderney & Guernsey Waters
- Cable route in French Territorial Waters

Sections by shallow stratigraphy
- Bedrock with Eocene Clay, Lag Gravel and Seabed Sediment
- Bedrock with Lag Gravel and Relict Seabed Sediment
- Bedrock with Lag Gravel and Seabed Sediment
- Bedrock with Seabed/Intertidal Sediment
- Bedrock with Thin Seabed Sediment
- Hurd Deep

This data is Copyright 2012 OpenStreetMap contributors. It is available under the Open Database License (ODbL). For more information see http://www.openstreetmap.org/copyright
Figure 6: Seabed features of archaeological potential (2 of 4)

Legend
- Territorial Sea Limit
- FAB Link Marine Cable Corridor
- Study area in UK Waters
- Study area in French EEZ
- Study area in Alderney & Guernsey Waters
- Cable route in French Territorial Waters

Marine cable corridor seabed features of archaeological potential:
- A1: Anthropogenic origin of archaeological interest
- A2: Uncertain origin of possible archaeological interest
- A3: Historic record of possible archaeological interest with no corresponding geophysical anomaly

Marine cable corridor linear features

Date: 27/07/2016
Projection: WGS_1984_UTM_Zone_30N
Spheroid: WGS_1984
Datum: D_WGS_1984
Data Source: -
File Reference: 112690_WSI_Fig06
Created By: KJF
Reviewed By: -
Approved By: -
Figure 7: Seabed features of archaeological potential (3 of 4)

Legend
- Territorial Sea Limit
- FAB Link Marine Cable Corridor
 - Study area in UK Waters
 - Study area in French EEZ
 - Study area in Alderney & Guernsey Waters
 - Cable route in French Territorial Waters
- Marine cable corridor seabed features of archaeological potential
 - A1: Anthropogenic origin of archaeological interest
 - A2: Uncertain origin of possible archaeological interest
 - A3: Historic record of possible archaeological interest with no corresponding geophysical anomaly

Date: 27/07/2016
Projection: WGS_1984_UTM_Zone_30N
Spheroid: WGS_1984
Datum: D_WGS_1984
Data Source: -
File Reference: 112690_WSI_Fig07
Created By: KJ
Reviewed By: -
Approved By: -
Figure 8: Seabed features of archaeological potential (4 of 4)

Legend
- UK-France Median Line
- FAB Link Marine Cable Corridor
- Study area in UK Waters
- Study area in French EEZ
- Study area in Alderney & Guernsey Waters
- Cable route in French Territorial Waters
- Marine cable corridor seabed features of archaeological potential
 - A1: Anthropogenic origin of archaeological interest
 - A2: Uncertain origin of possible archaeological interest
 - A3: Historic record of possible archaeological interest with no corresponding geophysical anomaly

NOTE: Not to be used for Navigation

This data is Copyright 2012 OpenStreetMap contributors. It is available under the Open Database License (ODbL). For more information see http://www.openstreetmap.org/copyright